

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 7

 For most parsers, it is desirable that the grammar be made unambiguous, for if it is

not, we cannot uniquely determine which parse tree to select for a sentence.

 In other cases, it is convenient to use carefully chosen ambiguous grammars, together

with disambiguating rules that "throw away" undesirable parse trees, leaving only

one tree for each sentence.

EXAMPLE

Consider very simple sentence id+ id * id.

1st Leftmost Derivation 2nd Leftmost Derivation

E ===> E + E
 ===> id + E
 ===> id + E * E
 ===> id + id * E
 ===> id + id * id

E ===> E * E
 ===> E + E * E
 ===> id + id * E
 ===> id + id * E
 ===> id + id * id

1st Parse Tree 2nd Parse Tree

 E
/ | \

 E + E
 | / | \
 id E * E
 | |
 id id

 E
 / | \
 E * E
 / | \ |

 E + E id
 | |
 id id

2.2 TOP DOWN PARSING
 Parsing is the process of determining if a string of token can be generated by a

grammar.

 Mainly 2 parsing approaches:

 Top Down Parsing

 Bottom Up Parsing

 In top down parsing, parse tree is constructed from top (root) to the bottom (leaves).

 In bottom up parsing, parse tree is constructed from bottom (leaves)) to the top (root).

 It can be viewed as an attempt to construct a parse tree for the input starting from the

root and creating the nodes of parse tree in preorder.

 Pre-order traversal means: 1. Visit the root 2. Traverse left subtree 3. Traverse right

subtree.

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 8

 Top down parsing can be viewed as an attempt to find a leftmost derivation for an

input string (that is expanding the leftmost terminal at every step).

2.2.1 RECURSIVE DESCENT PARSING

It is the most general form of top-down parsing.

It may involve backtracking, that is making repeated scans of input, to obtain the correct

expansion of the leftmost non-terminal. Unless the grammar is ambiguous or left-recursive,

it finds a suitable parse tree

EXAMPLE

Consider the grammar:

S  cAd

A  ab | a

and the input string w = cad.

 To construct a parse tree for this string top down, we initially create a tree consisting

of a single node labelled S.

 An input pointer points to c, the first symbol of w. S has only one production, so we

use it to expand S and obtain the tree as:

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 9

 The leftmost leaf, labeled c, matches the first symbol of input w, so we advance the

input pointer to a, the second symbol of w, and consider the next leaf, labeled A.

 Now, we expand A using the first alternative A → ab to obtain the tree as:

 We have a match for the second input symbol, a, so we advance the input pointer to

d, the third input symbol, and compare d against the next leaf, labeled b.

 Since b does not match d, we report failure and go back to A to see whether there is

another alternative for A that has not been tried, but that might produce a match.

 In going back to A, we must reset the input pointer to position 2 , the position it had

when we first came to A, which means that the procedure for A must store the input

pointer in a local variable.

 The second alternative for A produces the tree as:

 The leaf a matches the second symbol of w and the leaf d matches the third symbol.

Since we have produced a parse tree for w, we halt and announce successful

completion of parsing. (that is the string parsed completely and the parser stops).

 The leaf a matches the second symbol of w and the leaf d matches the third symbol.

Since we have produced a parse tree for w, we halt and announce successful

completion of parsing. (that is the string parsed completely and the parser stops).

2.2.2 PREDICTIVE PARSING

 A predictive parsing is a special form of recursive-descent parsing, in which the

current input token unambiguously determines the production to be applied at each

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 10

step. The goal of predictive parsing is to construct a top-down parser that never

backtracks. To do so, we must transform a grammar in two ways:

 Eliminate left recursion, and

 Perform left factoring.

 These rules eliminate most common causes for backtracking although they do not

guarantee a completely backtrack-free parsing (called LL(1) as we will see later).

Left Recursion

 A grammar is said to be left –recursive if it has a non-terminal A such that there is a

derivation A  A, for some string .

EXAMPLE

Consider the grammar

A  A

A  

 It recognizes the regular expression *. The problem is that if we use the

first production for top-down derivation, we will fall into an infinite

derivation chain. This is called left recursion.

 Top–down parsing methods cannot handle left recursive grammars, so a

transformation that eliminates left-recursion is needed. The left-recursive

pair of productions A  A| could be replaced by two non-recursive

productions.

A   A’

 A’  A’|

 Consider The following grammar which generates arithmetic expressions

E  E + T|T

T  T * F|F

F  (E)|id

Eliminating the immediate left recursion to the productions for E and then for T, we

obtain

E  T E’

E’  + T E’|

T  F T’

T’  * F T’|

F  (E)|id

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 11

 No matter how many A-productions there are, we can eliminate immediate left

recursion from them by the following technique. First, we group the A productions as

A  A1 | A2 | . . . | Am|1|2| . . . |n

where no i begins with an A. Then we replace the A-productions by

 A  1 A’|2 A’| . . . |n A’

A’ 1 A’|2 A’| . . . |m A’|

Left Factoring

 Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing.

 The basic idea is that when it is not clear which of two alternative productions to use

to expand a non-terminal A, we may be able to rewrite the A-productions to defer the

decision until we have seen enough of the input to make the right choice

A   1| 2

 are two A-productions, and the input begins with a non-empty string derived from 

we do not know whether to expand A to  1 or  2.

 However, we may defer the decision by expanding A to B. Then, after seeing the

input derived from , we may expand B to 1 or 2 .

 The left factored original expression becomes:

A  B

B  1|2

 For the “dangling else “grammar:

stmt if cond then stmt else stmt |if cond then stmt

The corresponding left – factored grammar is:

stmt  if cond then stmt else_clause

else_clause  else stmt | 

Non Recursive Predictive parser

 It is possible to build a nonrecursive predictive parser by maintaining a stack

explicitly, rather than implicitly via recursive calls.

 The key problem during predictive parsing is that of determining the production to

be applied for a nonterminal.

 The nonrecursive parser in looks up the production to be applied in a parsing table

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 12

Requirements

1. Stackv

2. Parsing Table

3. Input Buffer

4. Parsing

 Figure : Model of a nonrecursive predictive parser

 Input buffer - contains the string to be parsed, followed by $(used to indicate end of

input string)

 Stack – initialized with $, to indicate bottom of stack.

 Parsing table - 2 D array M[A,a] where A is a nonterminal and a is terminal or the

symbol $

 The parser is controlled by a program that behaves as follows. The program considers

X, the symbol on top of the stack, and a current input symbol. These two symbols

determine the action of the parser.

 There are three possibilities,

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a  $, the parser pops X off the stack and advances the input pointer to

the next input symbol,

3. If X is a nonterminal, the program consults entry M|X, a | of the parsing table

M. The entry will be either an X-production of the grammar or an error entry.

If, for example, M |X, u |= {X  UVW}, the parser replaces X on top of the stack

by WVU (with U on top). As output we shall assume that the parser just prints

the production used; any other code could be executed here. If M|X, a| = error,

the parser calls an error recovery routine.

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 13

Predictive Parsing Algorithm

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L (G) , a leftmost derivation of w; otherwise, an error indication.

METHOD: Initially, the parser is in a configuration in which it has $S on the stack with

S, the start symbol of G on top, and w$ in the input buffer. The program that utilizes the

predictive parsing table M to produce a parse for the input is shown below.

set ip to point to the first symbol of w$;

repeat

let X be the lop stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then

if X = a then

pop X from the stack and advance ip

else error ()

else /* X is a nonterminal */

if M|X, a|= X  Y1 Y2 . . . Yi then begin

pop X from the stack;

push Yk, Yk-1,. . . , Yl onto the stack, with Yl on top;

output the production X  Y1 Y2Yk

end

else error ()

until X = S /* stack is empty */

EXAMPLE

Consider Grammar:

E  T E’

E'  +T E' | Є

T  F T'

T'  * F T' | Є

F  (E) | id

Free Hand

CS304 Compiler Design/B.Tech/S6

Ms. Anakha Satheesh P , Assistant Professor/CSE 14

Construction Of Predictive Parsing Table

 Uses 2 functions:

 FIRST()

 FOLLOW()

 These functions allows us to fill the entries of predictive parsing table

FIRST

 If 'α' is any string of grammar symbols, then FIRST(α) be the set of terminals that begin

the string derived from α . If α==*>є then add є to FIRST(α).First is defined for both

terminals and non terminals.

 To Compute First Set

1. If X is a terminal , then FIRST(X) is {X}

2. If X є then add є to FIRST(X)

3. If X is a non terminal and XY1Y2Y3...Yn , then put 'a' in FIRST(X) if for some i,

a is in FIRST(Yi) and є is in all of FIRST(Y1),...FIRST(Yi-1).

EXAMPLE

Consider Grammar:

E  T E’

E'  +T E' | Є

T  F T'

T'  * F T' | Є

F  (E) | id

Free Hand

2.2.2 PREDICTIVE PARSING

A predictive parsing is a special form of recursive-descent parsing, in which the current input token

unambiguously determines the production to be applied at each step. The goal of predictive parsing

is to construct a top-down parser that never backtracks. To do so, we must transform a grammar in

two ways:

Eliminate left recursion, and Perform left factoring.

These rules eliminate most common causes for backtracking although they do not guarantee a

completely backtrack-free parsing (called LL(1) as we will see later)

