o fﬂﬂfﬁ QLmLJ\Lm 201 07 [tasey

b 4 Ly ﬂaa.fﬁam nhose ab o c,omm/ey brmk,s_
F— *%%Q-&% Into mnﬁh/uim}ﬁp_em_@ulci—
nuclioke veprescntodion bor it

L L cafed MMM sunhusis m//loue ol

»Lcmzs [ML &7wo/(/\m,& ugje o /’fu fo«mef

& _p m:
E . $Orvvx m LAOLRgC rJMCw be/j Hu m(') bt 740’m0 GAI:L

Bli o ._A_L&/_DPJNQ; UOQ\A(I Hak seroanhu oh H«L /(um;u\o,uue
DMIQU_\ cohad- il poaswaeen, Hiodk s o&é\mpgmok

B _pﬁw\z OJJOU a.réum m&/e:(oudm

Oon(u [bree oyammenys oY BIVE CBoe kuu

1N01u'y me) ove eaolodely ease0l Amf 5Deu{suiruu sun!m-
J ¢

Lr e lr)AO‘)'mOJ dlescyipXAohs ouxc) sumeﬂffw xmml@[g
,f__LQ\n waeel boy almuéumu serocn by,

,“4_
ol - jr\l O ey Obb\/\m oL R%nn: by J’bk.qm ATmm

| Hu toueod ommfuzew ol ww(mgj ot He stvine
W*MWM@%W

4‘»01 Hu SOWALE ’mmumwue

- hLu nm"mt&] ognahucb\ QAL rATSe beo ouwncl

-_pamu %+ to MMMJLIM_MML)

| py.

e e e |
t-) Fabe o0 0o |

ey

w(’m ab Grammnaens /Cm’)nc{' hrex &mmma;
X A conlixY - fre o 66&1&

mmnnnmbs { WsTLD:

) A 01 ab”ﬁ7wdmi_§;mbdi_ammm
fo ou fokerns. Tokend are e(pmmfmw survobols

o Hu Iwnumowe alebivad by Hm m&mmmw

1

wnhchi‘ variodoes. Zad/t, won[MYMmj_ﬂpmmL

5 st ab Bq‘Mm oy hvwm_&ff,Lam&_mfu)_

3. Produchofs,

Mm@w
./(Lvmnal callie] M luoel or Lobtsiols @éﬁ‘!,_

h("//’) an _aryowul /‘——? QY :"’3 OU’)(‘/ CL 8(’1?1(/\1)‘)(’1

Cﬁ')”Y\/\/\)O(’AI,d oy non/(mwr)p,«ﬂ colled lzndu
oY wo//\} sicle _ob Hu o J

i< Stat Sumbol . on non-fermined i's elesjonalde] au

Ay

-l
[t }vﬁ‘.ﬁ [)@'Y D= 5l o\.t,mrolﬁmd J(l; Hu
L1l

- -t
/ Y *
\ g
/pja\ df@ir’ B

pfal ooy /

| ! 4

| dfﬁf&
TR R S K
ol The (\o/lowt'hér 87ummow s caed for a’iwygk oyl el
.; GJI{D)U&)OM

eocpmmon - expmmom + ferm o
exprenion = expresion — feym
expreaion = foym
bkvm —> fym bactoy
Feym —» fom /fowcds y

 fdedoy — CC.X,D?‘My;'On) i
- h— pCleOY 1d Sae
i JJZPmmn bactor el terro- mye. twon fon —
esion Js e sladd mﬁoA H
— /'*'H*c L kVV\MVﬁ,“ ot it

| cx @

| LMD € =p EBXE :Dt"",.‘!-
| =D C+E * € > a&EP,.
i = id+Ex € —> BT
| | ol % © S22 Gxrda g
e ——— *-T_-’,j%:: v iepp_— -) 'djdt&%a“w T T kl* 'd" ?\
| SRRRS J,! ﬂxmmt h:uo.- pes _ab clexiv

B i LcHry\,deuzmho _for each. d“'m”’” th
R A lebdvost nonkrnaanal o ecch sentenhil éoirv\)
ot At -%-_\Q{llmcec)___ F o = =g I3 & step in. which th
E_" | Jedmaest non fmvinpd - n G is Tepbusd.u
AL e ipdaitesd %-/3 e e A S T

11 G S - E

> —Cida i)

R;mh}vmm‘ dlevi volidn : Fov eacl deyivapw'o_n: e
zvr&@\hfwoa} wonteyninad in each sentenhal éorm

-
;

‘r‘sq Dlound We corili od_Dn I Huou cose

E=>—F = ~(E+e)=> "CE"P"d):i*—Ud“’j
rm vym i W

| Racdibyraost clevivabons ave Mﬂammﬂed
nmwov&leﬂd ooy ivadtions.

;Pm‘se Trees ond Devivodion

I[}[£ 4 [20rse Frea /s o gjvaLlMLﬁ,chngz&on

ab Mw‘mlfm Mhak M/m @u} Hm orcley In

<L

CS304 Compiler Design/B.Tech/S6

*

*

For most parsers, it is desirable that the grammar be made unambiguous, for if it is
not, we cannot uniquely determine which parse tree to select for a sentence.

In other cases, it is convenient to use carefully chosen ambiguous grammars, together
with disambiguating rules that "throw away" undesirable parse trees, leaving only
one tree for each sentence.

EXAMPLE

Consider very simple sentence id+ id * id.

1st Leftmost Derivation 2nd Leftmost Derivation

E===>E+E E===>E*E
===>jid + E ===>E+E*E
===>jid+E*E ===>jid+id * E
===>jd +id * E ===>jd +id * E
===>jd +id * id ===>id +id *id
1st Parse Tree 2nd Parse Tree
E E
/1\ /1\
E + E E * E
| /1\ /1N
id E * E E+ E id
I I I I
id id id id

2.2 TOP DOWN PARSING

Parsing is the process of determining if a string of token can be generated by a
grammar.

Mainly 2 parsing approaches:
» Top Down Parsing

> Bottom Up Parsing

+ In top down parsing, parse tree is constructed from top (root) to the bottom (leaves).

In bottom up parsing, parse tree is constructed from bottom (leaves)) to the top (root).

+ It can be viewed as an attempt to construct a parse tree for the input starting from the

root and creating the nodes of parse tree in preorder.

Pre-order traversal means: 1. Visit the root 2. Traverse left subtree 3. Traverse right
subtree.

Free Hand

CS304 Compiler Design/B.Tech/S6

4+ Top down parsing can be viewed as an attempt to find a leftmost derivation for an
input string (that is expanding the leftmost terminal at every step).

Top-Down

|

Recursive Descent

2 e

Back-tracking Non Back-tracking

|

Predictive Parser

¢
LL Parser

2.2.1 RECURSIVE DESCENT PARSING

It is the most general form of top-down parsing.

It may involve backtracking, that is making repeated scans of input, to obtain the correct
expansion of the leftmost non-terminal. Unless the grammar is ambiguous or left-recursive,
it finds a suitable parse tree

EXAMPLE
Consider the grammar:
S 2> cAd
A>ab|a
and the input string w = cad.

%+ To construct a parse tree for this string top down, we initially create a tree consisting
of a single node labelled S.

< An input pointer points to ¢, the first symbol of w. S has only one production, so we
use it to expand S and obtain the tree as:

AN

Free Hand

CS304 Compiler Design/B.Tech/S6

% The leftmost leaf, labeled ¢, matches the first symbol of input w, so we advance the
input pointer to a, the second symbol of w, and consider the next leaf, labeled A.

< Now, we expand A using the first alternative A — ab to obtain the tree as:

/\\
/\

<» We have a match for the second input symbol, a, so we advance the input pointer to
d, the third input symbol, and compare d against the next leaf, labeled b.

%+ Since b does not match d, we report failure and go back to A to see whether there is
another alternative for A that has not been tried, but that might produce a match.

< In going back to A, we must reset the input pointer to position 2, the position it had
when we first came to A, which means that the procedure for A must store the input
pointer in a local variable.

%+ The second alternative for A produces the tree as:

AN
|

% The leaf a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce successful
completion of parsing. (that is the string parsed completely and the parser stops).

» The leaf a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce successful
completion of parsing. (that is the string parsed completely and the parser stops).

2.2.2 PREDICTIVE PARSING

+ A predictive parsing is a special form of recursive-descent parsing, in which the
current input token unambiguously determines the production to be applied at each

Free Hand

CS304 Compiler Design/B.Tech/S6

step. The goal of predictive parsing is to construct a top-down parser that never
backtracks. To do so, we must transform a grammar in two ways:

> Eliminate left recursion, and
> Perform left factoring.

+ These rules eliminate most common causes for backtracking although they do not
guarantee a completely backtrack-free parsing (called LL(1) as we will see later).

Left Recursion

+ A grammar is said to be left -recursive if it has a non-terminal A such that there is a
derivation A = Aa, for some string o.

EXAMPLE
Consider the grammar
A~ Aa
A->B

% It recognizes the regular expression fa*. The problem is that if we use the
first production for top-down derivation, we will fall into an infinite
derivation chain. This is called left recursion.

% Top-down parsing methods cannot handle left recursive grammars, so a
transformation that eliminates left-recursion is needed. The left-recursive
pair of productions A = Aa|B could be replaced by two non-recursive
productions.

AD>BA

A'> aA’le
+ Consider The following grammar which generates arithmetic expressions
E>E+T|T
T>T*F|F
F-> (E)|id

Eliminating the immediate left recursion to the productions for E and then for T, we
obtain

ES>TE
E>+TF|e
T>FT
T >*FT |e
F-> (E)|id

10

Free Hand

CS304 Compiler Design/B.Tech/S6

No matter how many A-productions there are, we can eliminate immediate left
recursion from them by the following technique. First, we group the A productions as

A%Aa1| A(X,zl e | Aamlﬁllﬁzl . e Iﬁn

where no B; begins with an A. Then we replace the A-productions by

AD>B1A|B2A"| ... |Ba A’
ADouA oA’ ... |lomA’|e
Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive parsing.

The basic idea is that when it is not clear which of two alternative productions to use
to expand a non-terminal A, we may be able to rewrite the A-productions to defer the
decision until we have seen enough of the input to make the right choice

A2 aBi|ap:

are two A-productions, and the input begins with a non-empty string derived from o
we do not know whether to expand A to a B1 or a Ba.

However, we may defer the decision by expanding A to aB. Then, after seeing the
input derived from a, we may expand B to Bi or B2 .

The left factored original expression becomes:

A > aB
B > B1|B2

For the “dangling else “grammar:

stmt 2if cond then stmt else stmt |if cond then stmt
The corresponding left - factored grammar is:

stmt - if cond then stmt else_clause

else_clause > else stmt | ¢

Non Recursive Predictive parser

*

It is possible to build a nonrecursive predictive parser by maintaining a stack
explicitly, rather than implicitly via recursive calls.

The key problem during predictive parsing is that of determining the production to
be applied for a nonterminal.

The nonrecursive parser in looks up the production to be applied in a parsing table

11

Free Hand

CS304 Compiler Design/B.Tech/S6

Requirements
1. Stackv
2. Parsing Table

3. Input Buffer

4. Parsing

input aj+|b|$

stack icti '

stac : Predictive parsing > output
¥ program (driver) .
Y
Z Parsing table
$ M

Figure : Model of a nonrecursive predictive parser

4+ Input buffer - contains the string to be parsed, followed by $(used to indicate end of
input string)

4+ Stack - initialized with $, to indicate bottom of stack.

4+ Parsing table - 2 D array M[A,a] where A is a nonterminal and a is terminal or the
symbol $

4+ The parser is controlled by a program that behaves as follows. The program considers
X, the symbol on top of the stack, and a current input symbol. These two symbols
determine the action of the parser.

4 There are three possibilities,
1. If X=a=$, the parser halts and announces successful completion of parsing.

2. IfX=a=#$, the parser pops X off the stack and advances the input pointer to
the next input symbol,

3. If Xis a nonterminal, the program consults entry M| X, a | of the parsing table
M. The entry will be either an X-production of the grammar or an error entry.
If, for example, M | X, u | = {X > UVW], the parser replaces X on top of the stack
by WVU (with U on top). As output we shall assume that the parser just prints
the production used; any other code could be executed here. If M| X, a| = error,
the parser calls an error recovery routine.

12

Free Hand

CS304 Compiler Design/B.Tech/S6

Predictive Parsing Algorithm

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If wisin L (G), a leftmost derivation of w; otherwise, an error indication.

METHOD: Initially, the parser is in a configuration in which it has $S on the stack with
S, the start symbol of G on top, and w$ in the input buffer. The program that utilizes the

predictive parsing table M to produce a parse for the input is shown below.

set ip to point to the first symbol of w$;
repeat
let X be the lop stack symbol and a the symbol pointed to by ip;
if X is a terminal or $ then
if X = a then
pop X from the stack and advance ip
else error ()
else /* Xis a nonterminal */
ifM|X,a|=X=2>Y1Y2...Y;then begin
pop X from the stack;
push Yy, Yia,. . ., Y1 onto the stack, with Y; on top;
output the production X 2 Y1 Y2.. .Yk
end
else error ()

until X =S /* stack is empty */

EXAMPLE

Consider Grammar:

ES>TE
E'>+TE | €
T>FT
T>*FT | €
F-> (E) | id

13

Free Hand

CS304 Compiler Design/B.Tech/S6

Construction Of Predictive Parsing Table
4+ Uses 2 functions:
> FIRST()
> FOLLOW()
4+ These functions allows us to fill the entries of predictive parsing table
FIRST

+ If 'a'is any string of grammar symbols, then FIRST(a) be the set of terminals that begin
the string derived from a . If a==*>e¢ then add e to FIRST(a).First is defined for both
terminals and non terminals.

4+ To Compute First Set
1. If Xis a terminal , then FIRST(X) is {X}
2. If X-> e then add € to FIRST(X)

3. If Xis a non terminal and X->Y1Y2Ys...Yn, then put 'a' in FIRST(X) if for some i,
a is in FIRST(Y;) and € is in all of FIRST(Y1),...FIRST(Y;.).

EXAMPLE

Consider Grammar:

ESTFE
E'>+TE | €
TS>FT
T>*FT | €
F>(E)|id

Non-terminal FIRST

E (, id
= .
T (, id
T >
F (, id

14

Free Hand

2.2.2 PREDICTIVE PARSING

A predictive parsing is a special form of recursive-descent parsing, in which the current input token
unambiguously determines the production to be applied at each step. The goal of predictive parsing
is to construct a top-down parser that never backtracks. To do so, we must transform a grammar in
two ways:

Eliminate left recursion, and Perform left factoring.

These rules eliminate most common causes for backtracking although they do not guarantee a
completely backtrack-free parsing (called LL(1) as we will see later)

Date
Page

Q

JTPOT L

UNIRE it;) L,('&), o [ud!

vt cleyivedhgn o

-

A2 ! oHu'fw\at, an_errer Indicalioh:

' oL
wp in Hu T/p butbey

ﬁhﬂ_ﬁmbgl_ﬁ_ﬂﬁ_ﬁ_mb_&p_@ﬁ_&ﬂ&uk,_
P
Ve v

mbn(j

wohale € x == $,)‘,j* stale no

il aleove .
2k 7o b polot fo Fh birat sumobol ab wos (i, a) »
20t X ko Hue lép ab aloul S -

3

- evaply # /
'

3l lvP (x =c) pop Hu douk and advance Lp)

oo telse P (x ia QL&'YW\AHGJ) 7707 ()}

|

~else if (MC X,0] 1san YYDy ml-vu) eYYY ()
e dielse il Crafiso] = x—> Yy --- e)

*
2

AAAAA C’Af.nwkr
P
4 Date
. ;)
(R e &a-_;«
3

e ———————— i ———
——————— e ———

B mels boN sl i

T I "
|_ e T =S ET ’ o AP

e e T wepl Lee LS

I o e [ts) /I‘d - & 05l

‘ﬂp&zﬂ‘___id:k e 1ol
Tha wmnm_ﬁ_fw

E ~> TE ,_> Frie'=ldT'e = 'dE' 1d1~TC_,

Modeheel Showk lrjmu" _Achon,
Egd imliuim‘_d.ql
TE'i 1ol + 1d ¥ [dﬁ Quip;ﬁ E—> TE
FT el ol o ol § oudpul T— FT'
| di'e'd id+ideid$ eddpul F—>
1d o Tleld +idxidd modelh fo]
1ol e'd +idxidd sl o
il +TE'$
1+ TS

— .'.h 1#&.‘.—!:.'1:'_&‘!"_ et ‘I;.- i

lassmate
er ;Gge it .//\i
tm/
7 T r— — —_——
3 \Mu“\\\\\k;
PV

I
PICQA Prroceo) AYe {!C\.!

o ot LIy ey
voidl A L) { it 4 it ‘QLHQP M
) Choose o A pdn, A—s X+X& Ao
2) tor (= bn £} g ; :
1 Covs iso Mn{uwnszLL _____
call proceoluye _XLQ},_, WEN S - A Sl 1
| else (P Cx; epuals Hascarrent &Qh_-__-y
g L o\dyo«nce@ﬁm ' o Hu m:»c}%km__‘

elac /* o err0r how Ocemyeo)

:‘)chdl{)ftd [£ A nol meb lB_QJAmai QLJAV\/\O:M,Q A

I ok live 1, s0 aemmLmM_hm&.KbbeJmm_@m
I Tinwm ovely: Than bovilure ok Live 3 ia wob wldivak

boilure,, __bu}-, esb Hob e wed 5 vehuen fo ey
o\nd A A - e Q ifhnm_wﬁmi

‘o o1 hos been bound
éo movdn }og W APd!-L o pmalo lz; »

LYext b HLL a‘ w/um ik oo wl\m
U’\/\L b 2% ,__ﬂAAAAL QL-JA?QGLm'IJQAbh“MA_
e I)p - poinlit. oy durHey wse :

J Mne)l%f Hu obowa ;ama ol

10 gﬂow_ backolmkm\& __Hfmgbo:v_t cmLmele_fL i

,U o, HLL Jucr.)d mbo/ oué o
- The mext hc%mz)nurﬂm/ﬁglél
'YDCU‘ Ive A —>0h is Qél:t?@deﬂ MLM@LQMM

3 el LALASONGNC gl

o s il B

A
A rookeh du oblwined for Hie sewo

,.IE:D sa ﬁh /P—Pjégumm _MML
Lhanee,) mth ol’ ;AA_QAQLVL{QQ&.LQ]_ -
;DOIH\/_ C’L_ R hnag : it 4& Mﬁ_ﬁ_@%&

;;HL!LJ(’_.__U_'LA,QM&LL allitiacaliog . dheeh Moot 0l

[D S .
[qoingy l'x’.tLlC fo A, e naadt vesed Hie //; J

- pam[u %_%oau&nn . CHu_ posihén it had, ki
{)l'rﬁ COYVL [5 A) cohich nwwans Hhak &,L pIOCe.—
f.alun téml,A mest store Hha /L Domln? 1 oL f/ov.m! !

LAY K’Ab[S S "
O T 2™ sdlemadive f)n.nﬁ__pi‘ﬂo)um Hu Fmg !

ol

Sy ok e e i
;; e a4
| il _*_-_5_;14@1 ¥

